
Javascript Input/Output

Documentation Index
Introduction

What is jIO?
How does it work?
Getting started

How to manage documents?
What is a document?
Basic Methods

Promises
Method Options and Callback Responses
Example: How to store a video on localStorage

Revision Storages: Conflicts and Resolution
Why Conflicts can Occur
How to solve conflicts
Simple Conflict Example

List of Available Storages
Connectors

LocalStorage
DavStorage
S3Storage
XWikiStorage

Handlers
IndexStorage
GIDStorage
SplitStorage
Replicate Storage

Revision Based Handlers
Revision Storage
Replicate Revision Storage

JIO Complex Queries
What are Complex Queries?
Why use Complex Queries?
How to use Complex Queries with jIO?
How to use Complex Queries outside jIO?
Complex Queries in storage connectors
Matching properties
Should default search types be defined in jIO or in user interface components?
Convert Complex Queries into another type
JSON Schemas and Grammar

For developers
Quick start
Naming Conventions
How to design your own jIO Storage Library
Job rules
Create Job Condition
Add job rules
Clear/Replace default job rules

Authors
Copyright and license

Introduction

What is jIO?

JIO is a JavaScript library that allows to manage JSON documents on local or remote storages in
asynchronous fashion. jIO is an abstracted API mapped after CouchDB, that offers connectors to
multiple storages, special handlers to enhance functionality (replication, revisions, indexing) and a
query module to retrieve documents and specific information across storage trees.

How does it work?

JIO is separated into three parts - jIO core and storage library(ies). The core is using storage libraries



(connectors) to interact with the accociated remote storage servers. Some queries can be used on top
of the jIO allDocs method to query documents based on defined criteria.

JIO uses a job management system, so every method called adds a job into a queue. The queue is
copied in the browsers local storage (by default), so it can be restored in case of a browser crash. Jobs
are being invoked asynchronously with ongoing jobs not being able to re-trigger to prevent conflicts.

Getting started

This walkthrough is designed to get you started using a basic jIO instance.

1. Download jIO core, the storages you want to use as well as the complex-queries scripts as well
as the dependencies required for the storages you intend to use. [Download & Fork]

2. Add the scripts to your HTML page in the following order:

<script src="sha256.amd.js"></script>
<script src="rsvp-custom.js"></script>
<script src="jio.js"></script>

<script src="complex_queries.js"></script>
<script src="localstorage.js"></script>
<script src="davstorage.js"></script>

<script ...>

With require js, the main.js will be like this:

require.config({
  "paths": {
    
    "sha256": "sha256.amd", 
    "rsvp": "rsvp-custom",
    "jio": "jio",
    
    "complex_queries": "complex_queries",
    "localstorage": "localstorage",
    "davstorage": "davstorage"
  }
});

3. jIO connects to a number of storages and allows to add handlers (or functions) to specifc
storages. You can use both handlers and available storages to build a storage tree across which
all documents will be maintained and managed by jIO. See the list of available storages.

var my_jio = jIO.createJIO(storage_description);

4. The jIO API provides six main methods to manage documents across the storage(s) specified in
your jIO storage tree.

Method Sample Call Description
post my_jio.post(document, [options]); Creates a new document
put my_jio.put(document, [options]); Creates/Updates a document

putAttachment my_jio.putAttachement(attachment, [options]); Updates/Adds an attachment to a
document

get my_jio.get(document, [options]); Reads a document
getAttachment my_jio.getAttachment(attachment, [options]); Reads a document attachment

remove my_jio.remove(document, [options]); Deletes a document and its
attachments

removeAttachment my_jio.removeAttachment(attachment, [options]); Deletes a document attachment

allDocs my_jio.allDocs([options]); Retrieves a list of existing
documents

check my_jio.check(document, [options]); Check the document state
repair my_jio.repair(document, [options]); Repair the document

How to manage documents?

https://www.j-io.org/download-and-fork


JIO is mapped after the CouchDB API and extends it to provide unified, scalable and high performance
access via Javascript to a wide variety of different storage backends.

If you are unfamiliar with Apache CouchDB: it is a scalable, fault-tolerant, and schema-free document-
oriented database. It's used in large and small organizations for a variety of applications where
traditional SQL databases aren't the best solution for the problem at hand. CouchDB provides a
RESTful HTTP/JSON API accessible from many programming libraries and tools (like 'curl' or
'Pouchdb') and has it's own conflict management system.

What is a document?

A document an association with metadata and attachment(s). The metadata are the properties of the
document and the attachments are the binaries of the content of the document.

In jIO, metadata are just a dictionnary with keys and values (JSON object), and attachments are just
simple strings.

{ 
  "_id"   : "Identifier",
  "title" : "A Title!",
  "creator": "Mr.Author"
}

You can also retrieve document attachment metadata in this object.

{ 
  "_id"   : "Identifier",
  "title" : "A Title!",
  "creator": "Mr.Author",
  "_attachments": { 
    "body.html": {
      "length": 12893,
      "digest": "sha256-XXXX...",
      "content_type": "text/html"
    }
  }
}

Here is a draft about metadata to use with jIO.

Basic Methods

Below you can find sample calls of the main jIO methods. All examples are using revisions (as in
revision storage or replicate revision storage), so you can see, how method calls should be made with
either of these storages.

var jio_instance = jIO.newJio(storage tree description);

jio_instance.post({"title": "some title"}).
  then(function (response) {
    
  });

jio_instance.put({"_id": "my_document", "title": "New Title"}).
  then(function (response) {
    
  });

jio_instance.putAttachment({"_id": "my_document", "_attachment": "its_attachment",
                            "_data": "abc", "_mimetype": "text/plain"}).
  then(function (response) {
    
  });

jio_instance.get({"_id": "my_document"}).
  then(function (response) {
    
  });

jio_instance.getAttachment({"_id": "my_document", "_attachment": "its_attachment"}).
  then(function (response) {
    
  });

http://couchdb.apache.org/
http://www.j-io.org/P-JIO-Metadata


jio_instance.remove({"_id": "my_document"}).
  then(function (response) {
    
  });

jio_instance.removeAttachment({"_id": "my_document", "_attachment": "its_attachment"}).
  then(function (response) {
    
  });

jio_instance.allDocs().then(function (response) {
  
});

Promises

Each JIO methods return a Promise object, which allows us to get responses into callback parameters
and to chain callbacks with other returned values.

JIO uses a custom version of RSVP.js, adding canceler and progression features.

You can read more about promises:

github RSVP.js
Promises/A+
CommonJS Promises

Method Options and Callback Responses

To retrieve JIO responses, you have to give callbacks like this:

jio_instance.post(metadata, [options]).
  then([responseCallback], [errorCallback], [progressionCallback]);

On command success, responseCallback will be called with the JIO response as first parameter.
On command error, errorCallback will be called with the JIO error as first parameter.
On command notification, progressionCallback will be called with the storage notification.

Here is a list of responses returned by JIO according to methods and options:

Available Options (Methods)
Option Available for Response (Callback first parameter)

No options post, put, remove

{
  "result": "success",
  "method": "post", 
  "id": "my_doc_id",
  "status": 204,
  "statusText": "No Content"
}

No options putAttachment,
removeAttachment

{
  "result": "success",
  "method": "putAttachment", 
  "id": "my_doc_id",
  "attachment": "my_attachment_id",
  "status": 204,
  "statusText": "No Content"
}

No options get

{
  "result": "success",
  "method": "get",
  "id": "my_doc_id",
  "status": 200,
  "statusText": "Ok",
  "data": {
    
  }
}

No options getAttachment

{
  "result": "success",
  "method": "getAttachment",
  "id": "my_doc_id",
  "attachment": "my_attachment_id",
  "status": 200,
  "statusText": "Ok",

https://github.com/tildeio/rsvp.js
https://github.com/tildeio/rsvp.js#rsvpjs--
http://promisesaplus.com/
http://wiki.commonjs.org/wiki/Promises


  "data": Blob 
}

No option allDocs

{
  "result": "success",
  "method": "allDocs",
  "id": "my_doc_id",
  "status": 200,
  "statusText": "Ok",
  "data":  {
    "total_rows": 1,
    "rows": [{
      "id": "mydoc",
      "key": "mydoc", 
      "value": {},
    }]
  }
}

include_docs:
true allDocs

{
  "result": "success",
  "method": "allDocs",
  "id": "my_doc_id",
  "status": 200,
  "statusText": "Ok",
  "data":  {
    "total_rows": 1,
    "rows": [{
      "id": "mydoc",
      "key": "mydoc", 
      "value": {},
      "doc": {
        
      }
    }]
  }
}

Option Available for Response (Callback first parameter)

In case of error, the errorCallback first parameter will look like:

{
  "result": "error",
  "method": "get",
  "status": 404,
  "statusText": "Not Found",
  "error": "not_found",
  "reason": "document missing",
  "message": "Unable to get the requseted document"
}

Example: How to store a video on localStorage

The following shows how to create a new jIO in localStorage and then post a document with two
attachments.

var jio_instance = jIO.createJIO({
  "type": "local",
  "username": "usr",
  "application_name": "app"
});

function postMyVideoMetadata() {
  return jio_instance.post({
    "title"       : "My Video",
    "type"        : "MovingImage",
    "format"      : "video/ogg",
    "description" : "Images Compilation"
  }, putThumbnailAttachment);
}

function putThumbnailAttachment(err, response) {
  var id;
  if (err) {
    return alert('Error posting the document meta');
  }
  id = response.id;
  
  return jio_instance.putAttachment({
    "_id": id,
    "_attachment": "thumbnail",
    "_data": my_image,
    "_mimetype": "image/jpeg"
  }, putVideoContent);
}



function putVideoContent(err, response) {
  if (err) {
    return alert('Error attaching thumbnail');
  }
  
  return jio_instance.putAttachment({
    "_id": id,
    "_attachment": "video",
    "_data": my_video,
    "_mimetype":"video/ogg"
  }, checkResult);
}

function checkResult(err, response) {
  if (err) {
    return alert('Error attaching the video');
  }
  alert('Video Stored');
}

postMyVideoMetadata();

localStorage contents:

{
  "jio/local/usr/app/12345678-1234-1234-1234-123456789012": {
    "_id": "12345678-1234-1234-1234-123456789012",
    "title": "My Video",
    "type": "MovingImage",
    "format": "video/ogg",
    "description": "Images Compilation",
    "_attachments":{
      "thumbnail":{
        "digest": "md5-3ue...",
        "content_type": "image/jpeg",
        "length": 17863
      },
      "video":{
        "digest": "md5-0oe...",
        "content_type": "video/ogg",
        "length": 2840824
      }
    }
  },
  "jio/local/usr/app/myVideo/thumbnail": "/9j/4AAQSkZ...",
  "jio/local/usr/app/myVideo/video": "..."
}

Revision Storages: Conflicts and Resolution

Why Conflicts can Occur

Using jIO you can store documents in multiple storage locations. With increasing number of users
working on a document and some storages not being available or responding too slow, conflicts are
more likely to occur. JIO defines a conflict as multiple versions of a document existing in a storage tree
and a user trying to save on a version that does not match the latest version of the document.

To keep track of document versions a revision storage must be used. When doing so, jIO creates a
document tree file for every document. This file contains all existing versions and their status and is
modified whenever a version is added/updated/removed or when storages are being synchronized.

How to solve conflicts

Using the document tree, jIO tries to make every version of a document available on every storage.
When multiple versions of a document exist, jIO will select the latest, left-most version on the
document tree, along with the conflicting versions (when option conflicts: true is set in order for
developers to setup a routine to solve conflicts.

Technically a conflict is solved by deleting alternative versions of a document ("cutting leaves off from
the document tree"). When a user decides to keep a version of a document and manually deletes all
conflicting versions, the storage tree is updated accordingly and the document is available in a single
version on all storages.

Simple Conflict Example

You are keeping a namecard file on your PC updating from your smartphone. Your smartphone ran out
of battery and is offline when you update your namecard on your PC with your new email adress.



Someone else change this email from your PC and once your smartphone is recharged, you go back
online and the previous update is executed.

1. Setting up the storage tree

var jio_instance = jIO.newJio({
  
  "type":"replicaterevision",
  "storagelist":[{
    "type": "revision",
    "sub_storage": {
      "type": "dav",
      ...
    }
  }, {
    "type": "revision",
    "sub_storage": {
      "type": "local",
      ...
    }
  }]
});

2. Create your namecard on your smartphone

jio_instance.post({
  "_id": "myNameCard",
  "email": "me@web.com"
}).then(function (response) {
  
  
});

This will create the document on your webDav and local storage

3. Someone else updates your shared namecard on Webdav

jio_instance.put({
  "email": "my_new_me@web.com",
  "_id": "myNameCard"
  "_rev": "1-5782E71F1E4BF698FA3793D9D5A96393"
}).then(function (response) {
  
  
});

Your smartphone is offline, so you will now have one version (1-578...) on your smartphone and
another version on webDav (2-068...) on your PC.

4. You modify your namecard while being offline

jio_instance.get({"_id": "myNameCard"}).then(function (response) {
  
  
  

  return jio_instance.put({
    "_id": "myNameCard",
    "email": "me_again@web.com"
  });

}).then(function (response) {
  
  
});

5. Later, your smartphone is online and you retrieve your namecard.

jio_instance.get({"_id": "myNameCard"}).then(function (response) {
  
  
  
});

When multiple versions of a document are available, jIO returns the lastest, left-most version on
the document tree (2-375... and labels all other versions as conflicting 2-068...).

6. Retrieve conflicts by setting option

jio_instance.get({"_id": "myNameCard"}, {



  "conflicts": true
}).then(function (response) {
  
  
  
});

The conflicting version (2-068E...) is displayed, because {conflicts: true} was specified in the GET
call. Deleting either version will solve the conflict.

7. Delete conflicting version

jio_instance.remove({
  "_id": "myNameCard",
  "_rev": "2-068E73F5B44FEC987B51354DFC772891"
}).then(function (response) {
  
  
});

When deleting the conflicting version of your namecard, jIO removes this version from all
storages and sets the document tree leaf of this version to deleted. All storages now contain just
a single version of your namecard (2-3753...). Note, that the on the document tree, removing a
revison will create a new revision with status set to deleted.

List of Available Storages
JIO save his job queue in a workspace which is localStorage by default. Provided storage descirption
are also stored, and it can be dangerous if we store passwords.

The best way to create a storage description is to use the (often) provided tool given by the storage
library. The returned description is secured to avoid clear readable password. (enciphered password
for instance)

When building storage trees, there is no limit on the number of storages you can use. The only thing
you have to be aware of is compatability of simple and revision based storages.

Connectors

LocalStorage

Three methods are provided:

createDescription(username, [application_name], [mode="localStorage"])
createLocalDescription(username, [application_name])
createMemoryDescription(username, [application_name])

All parameters are strings.

Examples:

var jio = jIO.createJIO(local_storage.createDescription("me"));

var jio = jIO.createJIO(local_storage.createMemoryDescription("me"));

DavStorage

The tool dav_storage.createDescription generates a dav storage description for no, basic or digest
authentication (digest is not implemented yet).

dav_storage.createDescription(url, auth_type, [realm], [username], [password]);

All parameters are strings.

Only url and auth_type are required. If auth_type is equal to "none", then realm, username and password are
useless. username and password become required if auth_type is equal to "basic". And realm also becomes
required if auth_type is equal to "digest".

digest is not implemented yet

Be careful: The generated description never contains readable password, but for basic authentication,
the password will just be base64 encoded.



S3Storage

Updating to v2.0

XWikiStorage

Updating to v2.0

Handlers

IndexStorage

This handler indexes documents metadata into a database (which is a simple document) to increase
the speed of allDocs requests. However, it is not able to manage the include_docs option.

The sub storages have to manage query and include_docs options.

Here is the description:

{
  "type": "index",
  "indices": [{
    "id": "index_title_subject.json", 
    "index": ["title", "subject"], 
    "attachment": "db.json", 
    "metadata": { 
      "type": "Dataset",
      "format": "application/json",
      "title": "My index database",
      "creator": "Me"
    },
    "sub_storage": <sub storage where to store index>
                   
  }, {
    "id": "index_year.json",
    "index": "year"
    ...
  }],
  "sub_storage": <sub storage description>
}

GIDStorage

Full description here.

Updating to v2.0

SplitStorage

Updating to v2.0

Replicate Storage

Comming soon

Revision Based Handlers

A revision based handler is a storage which is able to do some document versionning using simple
storages listed above.

On JIO command parameter, _id is still used to identify a document, but another id _rev must be defined
to use a specific revision of this document.

On command responses, you will find another field rev which will represent the new revision produced
by your action. All the document history is kept unless you decide to delete older revisions.

Another fields conflicts, revisions and revs_info can be returned if the options conflicts: true, revs: true and
revs_info: true are set.

Revision Storage

Updating to v2.0

http://www.j-io.org/P-JIO-GIDStorage


Replicate Revision Storage

Updating to v2.0

JIO Complex Queries
Only one dependency is needed: <script src="rsvp-custom.js"></script>

What are Complex Queries?

In jIO, a complex query can tell a storage server to select, filter, sort, or limit a document list before
sending it back. If the server is not able to do so, the complex query tool can act on the retreived list by
itself. Only the allDocs method can use complex queries.

A query can either be a string (using a specific language useful for writing queries), or it can be a tree
of objects (useful to browse queries). To handle complex queries, jIO uses a parsed grammar file which
is complied using JSCC [link].

Why use Complex Queries?

Complex queries can be used similar to database queries. So they are useful to:

search a specific document
sort a list of documents in a certain order
avoid retreiving a list of ten thousand documents
limit the list to show only xy documents by page

For some storages (like localStorage), complex queries can be a powerful tool to query accessible
documents. When querying documents on a distant storage, some server-side logic should be run to
avoid having to request large amount of documents to run a query on the client. If distant storages are
static, an alternative would be to use an indexStorage with appropriate indices as complex queries will
always try to run the query on the index before querying documents itself.

How to use Complex Queries with jIO?

Complex queries can be triggered by including the option named query in the allDocs method call. An
example would be:

var options = {};

options['query'] = '(creator:"John Doe") AND (format:"pdf")';

options['query'] = {
  type:'complex',
  operator:'AND',
  query_list: [{
    "type": "simple",
    "key": "creator",
    "value": "John Doe"
  }, {
    "type": "simple",
    "key": "format",
    "value": "pdf"
  }]
};

options = {
  query: '(creator:"% Doe") AND (format:"pdf")',
  limit: [0, 100],
  sort_on: [['last_modified', 'descending'], ['creation_date', 'descending']],
  select_list: ['title'],
  wildcard_character: '%'
};

jio_instance.allDocs(options, callback);

How to use Complex Queries outside jIO?

Complex Queries provides an API - which namespace is complex_queries. Please also refer to the
Complex Queries sample page on how to use these methods in- and outside jIO. The module provides:

http://jscc.phorward-software.com/
http://git.erp5.org/gitweb/jio.git/blob/HEAD:/examples/complex_example.html?js=1


{
  parseStringToObject: [Function: parseStringToObject],
  stringEscapeRegexpCharacters: [Function: stringEscapeRegexpCharacters],
  select: [Function: select],
  sortOn: [Function: sortOn],
  limit: [Function: limit],
  convertStringToRegExp: [Function: convertStringToRegExp],
  QueryFactory: { [Function: QueryFactory] create: [Function] },
  Query: [Function: Query],
  SimpleQuery: { [Function: SimpleQuery] super_: [Function: Query] },
  ComplexQuery: { [Function: ComplexQuery] super_: [Function: Query] }
}

(Reference API comming soon.)

Basic example:

var object_list = [
  {"title": "Document number 1", "creator": "John Doe"},
  {"title": "Document number 2", "creator": "James Bond"}
];

var query = 'title: "Document number 1"';

complex_queries.QueryFactory.create(query).exec(object_list).then(function (result) {
  
  
  
});

Other example:

complex_queries.QueryFactory.create(query).exec(
  object_list,
  {
    "select": ['title', 'year'],
    "limit": [20, 20], 
    "sort_on": [['title', 'ascending'], ['year', 'descending']],
    "other_keys_and_values": "are_ignored"
  }
).then(operateResult);

complex_queries.QueryFactory.create(query).exec(object_list).then(function (result) {
  complex_queries.sortOn([['title', 'ascending'], ['year', 'descending']], result);
  complex_queries.limit([20, 20], result);
  complex_queries.select(['title', 'year'], result);
  return result;
}).then(operateResult);

Complex Queries in storage connectors

The query exec method must only be used if the server is not able to pre-select documents. As
mentioned before, you could use an indexStorage to maintain indices with key information on all
documents in a storage. This index file will then be used to run queries on if all fields, required in the
query answer are available in the index.

Matching properties

Complex Queries select items which exactly match with the value given in the query. You can use
wildcards ('%' is the default wildcard character), and you can change the wildcard character in the
query options object. If you don't want to use a wildcard, just set the wildcard character to an empty
string.

var query = {
  "query": 'creator:"* Doe"',
  "wildcard_character": "*"
};

Should default search types be defined in jIO or in user interface components?

Default search types should be defined in the application's user interface components because criteria
like filters will be changed frequently by the component (change limit: [0, 10] to limit: [10, 10] or
sort_on: [['title', 'ascending']] to sort_on: [['creator', 'ascending']]) and each component must have their
own default properties to keep their own behavior.

Convert Complex Queries into another type



Example, convert Query object into human readable string:

var query = complex_queries.QueryFactory.create('year: < 2000 OR title: "*a"'),
  option = {
    "wildcard_character": "*",
    "limit": [0, 10]
  },
  human_read = {
    "<": "is lower than ",
    "<=": "is lower or equal than ",
    ">": "is greater than ",
    ">=": "is greater or equal than ",
    "=": "matches ",
    "!=": "doesn't match "
  };

query.onParseStart = function (object, option) {
  object.start = "The wildcard character is '" +
    (option.wildcard_character || "%") +
    "' and we need only the " + option.limit[1] + " elements from the numero " +
    option.limit[0] + ". ";
};

query.onParseSimpleQuery = function (object, option) {
  object.parsed = object.parsed.key + " " + human_read[object.parsed.operator] +
    object.parsed.value;
};

query.onParseComplexQuery = function (object, option) {
  object.parsed = "I want all document where " +
    object.parsed.query_list.join(" " + object.parsed.operator.toLowerCase() +
    " ") + ". ";
};

query.onParseEnd = function (object, option) {
  object.parsed = object.start + object.parsed + "Thank you!";
};

console.log(query.parse(option));

JSON Schemas and Grammar

Below you can find schemas for constructing complex queries

Complex Queries JSON Schema
Simple Queries JSON Schema
Complex Queries Grammar

For developers

Quick start

To get started with jIO, clone one of the repositories link in Download & Fork tab.

To build your library you have to:

Install NodeJS (including NPM)
Install Grunt command line with npm. # npm -g install grunt-cli
Install dev dependencies. $ npm install
Compile JS/CC parser. $ make (until we found how to compile it with grunt)
And run build. $ grunt

The repository also includes the built ready-to-use files, so in case you do not want to build jIO
yourself, just use jio.js as well as complex_queries.js plus the storages and dependencies you need
and you will be good to go.

Naming Conventions

All the code follows this Javascript Naming Conventions.

How to design your own jIO Storage Library

Create a constructor:

http://www.j-io.org/jio-Complex.Queries.JSON.Schema
http://www.j-io.org/jio-Simple.Queries.JSON.Schema
http://www.j-io.org/jio-Complex.Queries.Grammar
https://www.j-io.org/download-and-fork
http://nodejs.org/
http://www.j-io.org/Javascript-Naming_Conventions


function MyStorage(storage_description) {
  this._value = storage_description.value;
  if (typeof this._value !== 'string') {
    throw new TypeError("'value' description property is not a string");
  }
}

Create 10 methods: post, put, putAttachment, get, getAttachment, remove, removeAttachment, allDocs, check and repair .

MyStorage.prototype.post = function (command, metadata, option) {
  var document_id = metadata._id;
  
};

MyStorage.prototype.get = function (command, param, option) {
  var document_id = param._id;
  
};

MyStorage.prototype.putAttachment = function (command, param, option) {
  var document_id = param._id;
  var attachment_id = param._attachment;
  var attachment_data = param._blob;
  
};

(To help you to design your methods, some tools are provided by jIO.util.)

The first parameter command provides some methods to act on the JIO job:

success, to tell JIO that the job is successfully terminated

command.success(status[Text], [{custom key to add to the response}]);

resolve, is equal to success

error, to tell JIO that the job cannot be done

command.error(status[Text], [reason], [message], [{custom key to add to the response}])

retry, to tell JIO that the job cannot be done now, but can be retried later. (same API than error)

reject, to tell JIO that the job cannot be done, let JIO to decide to retry or not. (same API than error)

The second parameter metadata or param is the first parameter given by the JIO user.

The third parameter option is the option parameter given by the JIO user.

Detail of what should return a method:

post --> success("created", {"id": new_generated_id})
put, remove, putAttachment or removeAttachment --> success(204)
get --> success("ok", {"data": document_metadata})

getAttachment -->

success("ok", {"data": binary_string, "content_type": content_type})

success("ok", {"data": new Blob([data], {"type": content_type})})

allDocs --> success("ok", {"data": row_object})

check -->

success("no_content")

error("conflict", "corrupted", "incoherent document or storage")

repair -->

success("no_content")

error("conflict", "corrupted", "impossible to repair document or storage")



After setting up all methods, your storage must be added to jIO. This is done using the jIO.addStorage()
method, which requires two parameters: the storage type (string) add a constructor (function). It is
called like this:

jIO.addStorage('mystoragetype', MyStorage);

Please refer to localstorage.js implementation for a good example on how to setup a storage and what
methods are required. Also keep in mind, that jIO is a job-based library, so whenever you trigger a
method, a job is created, which after being processed returns a response.

Job rules

jIO job manager will follow several rules set at the creation of a new jIO instance. When you try to call a
method, jIO will create a job and will make sure the job is really necessary and will be executed.
Thanks to these job rules, jIO knows what to do with the new job before adding it to the queue. You
can add your own rules like this:

These are the jIO default rules:

var jio_instance = jIO.createJIO(storage_description, {
  "job_rules": [{
    "code_name": "readers update",
    "conditions": [
      "sameStorageDescription",
      "areReaders",
      "sameMethod",
      "sameParameters",
      "sameOptions"
    ],
    "action": "update"
  }, {
    "code_name": "metadata writers update",
    "conditions": [
      "sameStorageDescription",
      "areWriters",
      "useMetadataOnly",
      "sameMethod",
      "haveDocumentIds",
      "sameParameters"
    ],
    "action": "update"
  }, {
    "code_name": "writers wait",
    "conditions": [
      "sameStorageDescription",
      "areWriters",
      "haveDocumentIds",
      "sameDocumentId"
    ],
    "action": "wait"
  }]
});

The following actions can be used:

ok - accept the job
wait - wait until the end of the selected job
update - bind the selected job to this one
deny - reject the job

The following condition function can be used:

sameStorageDescription - check if the storage descriptions are different.
areWriters - check if the commands are post, put, putAttachment, remove, removeAttachment, or repair.
areReaders - check if the commands are get, getAttachment, allDocs or check.
useMetadataOnly - check if the commands are post, put, get, remove or allDocs.
sameMethod - check if the commands are equal.
sameDocumentId - check if the document ids are equal.
sameParameters - check if the metadata or param are equal in deep.
sameOptions - check if the command options are equal.
haveDocumentIds - test if the two commands contain document ids

Create Job Condition

You can create 2 types of function: job condition, and job comparison.



jIO.addJobRuleCondition("isGetMethod", function (job) {
  return job.method === 'get';
});

jIO.addJobRuleCondition("sameTitleIfString", function (job, selected_job) {
  if (typeof job.kwargs.title === 'string' &&
      typeof selected_job.kwargs.title === 'string') {
    return job.kwargs.title === selected_job.kwargs.title;
  }
  return false;
});

Add job rules

You just have to define job rules in the jIO options:

var jio_instance = jIO.createJIO(storage_description, {
  "job_rules": [{
    "code_name": "avoid similar title",
    "conditions": [
      "sameStorageDescription",
      "areWriters",
      "sameTitleIfString"
    ],
    "action": "deny",
    "before": "writers update" 
    
  }]
});

Clear/Replace default job rules

If a job which code_name is equal to readers update, then add this rule will replace it:

var jio_instance = jIO.createJIO(storage_description, {
  "job_rules": [{
    "code_name": "readers update",
    "conditions": [
      "sameStorageDescription",
      "areReaders",
      "sameMethod",
      "haveDocumentIds"
      "sameParameters"
      
    ],
    "action": "update"
  }]
});

Or you can just clear all rules before adding other ones:

var jio_instance = jIO.createJIO(storage_description, {
  "clear_job_rules": true,
  "job_rules": [{
    
  }]
});

Authors
Francois Billioud
Tristan Cavelier
Sven Franck

Copyright and license
jIO is an open-source library and is licensed under the LGPL license. More information on LGPL can be
found here

Last update: Thu Oct 31 2013

http://en.wikipedia.org/wiki/GNU_Lesser_General_Public_License

	Javascript Input/Output
	Documentation Index
	Introduction
	What is jIO?
	How does it work?
	Getting started

	How to manage documents?
	What is a document?
	Basic Methods
	Promises

	Method Options and Callback Responses
	Example: How to store a video on localStorage

	Revision Storages: Conflicts and Resolution
	Why Conflicts can Occur
	How to solve conflicts
	Simple Conflict Example

	List of Available Storages
	Connectors
	LocalStorage
	DavStorage
	S3Storage
	XWikiStorage

	Handlers
	IndexStorage
	GIDStorage
	SplitStorage
	Replicate Storage

	Revision Based Handlers
	Revision Storage
	Replicate Revision Storage


	JIO Complex Queries
	What are Complex Queries?
	Why use Complex Queries?
	How to use Complex Queries with jIO?
	How to use Complex Queries outside jIO?
	Complex Queries in storage connectors
	Matching properties
	Should default search types be defined in jIO or in user interface components?
	Convert Complex Queries into another type
	JSON Schemas and Grammar

	For developers
	Quick start
	Naming Conventions
	How to design your own jIO Storage Library
	Job rules
	Create Job Condition
	Add job rules
	Clear/Replace default job rules

	Authors
	Copyright and license

